Artificial Intelligence (AI) in Mining Market
In the mining business, artificial intelligence (AI) refers to the use of cutting-edge computer systems and machine learning methodologies. Artificial Intelligence (AI) technologies are applied to optimize several mining operations, raise overall operational efficiency, improve safety, and enhance resource exploration.
AI is upending the mining sector by changing how daily tasks are carried out. Large volumes of data may be analyzed by these intelligent systems, which can also provide businesses digital solutions. This technology helps to improve mining operations' speed and safety. Technological advancement has traditionally been led by the mining sector. Innovation has been essential to increasing production and efficiency, from the development of the steam engine that made coal mining profitable to the application of sophisticated drilling techniques.
In order to improve the accuracy of resource estimation, mining companies are implementing AI-powered technologies. Artificial Intelligence (AI) systems can yield more accurate estimations of mineral reserves by analyzing trends in geological data and integrating historical mining data. By doing this, mining businesses are able to maximize the economic potential of their projects by making well-informed decisions about production planning, investment, and resource allocation.
Key Players
- Accenture (Ireland)
- Drone Deploy (United States)
- Earth AI
- Goldspot Discoveries Inc. (Canada)
- Infosys (India)
- Kore Geosystems (Canada)
- Minerva Intelligence (Canada)
- Rio Tinto (United Kingdom)
- TOMRA (Norway)
Segmentation
• By Type
o Machine learning
o Cmputer vision
o Natural language processing
o Robotics
o Data analytics
• By Mining
o Surface mining
o Underground mining
o Open-pit mining
• By Application
o Exploration
o Geology
o Ore sorting
o Equipment maintenance
o Safety and risk management
o Autonomous drilling
o Hauling
Market Dynamics
Driver
- By analyzing vast volumes of data, locating on-site targets, and offering insights on both, artificial intelligence (AI) can assist with mining exploration. It offers increased time and cost efficiency on the job site. By analyzing data to find potential for energy savings and boosting efficiency as a result, the mining industry can profit from the application of AI and other equally cutting-edge technologies to optimize energy use.
- By processing data rapidly and effectively, artificial intelligence (AI) in mining can help lower risk and its impact on the environment. AI can specifically be used to pinpoint places where operations can be optimized while also taking environmental effects into account. An enormous quantity of data is produced by mining operations, including production, environmental, geological, and geographical data.
- Conventional method of analyzing this data is laborious and intricate. With its sophisticated data processing powers, AI is able to foresee changes, identify patterns, and offer insightful information. For example, it can anticipate market trends, forecast demand for different minerals in the future, and support strategic planning.
- AI is also making significant progress in the important issue of resource allocation.
Restraints
- Quality of the data is one of the main challenges. The quality of AI and machine learning models depends on the quality of the training data. For mining businesses to support the creation of precise and trustworthy AI models, they must make sure they have strong processes in place for collecting and managing data.
Integrating AI technologies into current operations is a major problem as well. Mining operations are intricate, including numerous interrelated procedures. Careful preparation and implementation are needed to integrate AI systems successfully without interfering with these procedures. - Another crucial element is change management. Many employment may change as a result of AI and machine learning, which may cause opposition from the workforce. It will be critical for mining businesses to explain the advantages of these technologies to their workforce and offer training to assist in adjusting to the new work practices.
Opportunity
- Artificial intelligence (AI) has revolutionized mining in recent years by enabling more productive exploration, increasing automation, producing higher yields, significantly enhancing safety, and optimizing extraction, maintenance, and operational performance. The chance to create better and more effective systems that integrate AI into mining operations is presented by integration difficulties. These might result in the development of fresh ideas, improved workflow, and new jobs. It also presents an opportunity for the mining sector to reconsider and innovate existing techniques.
- Chance to participate in determining the direction the mining sector will go is presented by the standards and regulations' dynamic nature. Mining businesses and technology suppliers may guarantee the establishment of a regulatory environment that is both effective and balanced by actively collaborating with regulators and standards bodies.
Recent Industry Insight
- On Jul. 2023, Shandong Energy and Huawei Launch World's First Commercial Large AI Model for Energy Sector
- On Jul. 2023, Huawei Launches AI for Commercial Use in Mining Sector
- On Jul. 2023, Mining looks to AI for edge in finding new metal
- On Feb. 2019, Accenture to Launch Applied Intelligence Studio in South Africa for Mining
- On Aug. 2023, AI's Potential Role in the Coal Industry
- On Jul 2023, World's first commercial large AI model for energy sector
- On July 2023, Advanced Robotics, Autonomous Vehicles, And AI-Driven Digital Twins
- On Aug. 2023, Mila’s new partnership with KPI mining solution will focus AI on efficiently capturing critical mineral
Key Target Audience
- End User
- Potential Investors
- New Entrants
- Innovation and R&D
- Suppliers and Manufacturers
- Others
Market Segmentation
• By Type
o Machine learning
o Cmputer vision
o Natural language processing
o Robotics
o Data analytics
• By Mining
o Surface mining
o Underground mining
o Open-pit mining
• By Application
o Exploration
o Geology
o Ore sorting
o Equipment maintenance
o Safety and risk management
o Autonomous drilling
o Hauling